1 Farey Sequences

Definition 1 Farey Sequence. The Farey sequence of order n, denoted F_n, is the sequence of completely reduced fractions between 0 and 1 which, in lowest terms, have denominators less than or equal to n, arranged in order of increasing size.

Example 1

$F_1 = \{0/1, 1/1\}$
$F_2 = \{0/1, 1/2, 1/1\}$
$F_3 = \{0/1, 1/3, 1/2, 2/3, 1/1\}$
$F_4 = \{0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1\}$
$F_5 = \{0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1\}$
$F_6 = \{0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1/1\}$
$F_7 = \{0/1, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 1/1\}$

Properties of Farey Sequences.

- F_n contains F_k for all $k \leq n$.
- F_n is equal to F_{n-1} plus an additional fraction for each number that is less than n and coprime to n. For example, F_6 consists of F_5 together with $1/6$ and $5/6$.
- Let $|F_n|$ denote the number of fractions in F_n. For $n > 1$, $|F_n|$ is odd and the middle term of F_n is equal to $1/2$.
- $|F_n| = |F_{n-1}| + \phi(n)$
- Since $|F_1| = 2$, we obtain

$$|F_n| = 1 + \sum_{k=1}^{n} \phi(k),$$

where $\phi(k)$ is Euler’s totient function ($\phi(k)$ is equal to the number of positive integers less than or equal to k that are relatively prime to k).

- Example of the mediant property. Unfortunately, addition of fractions is not as easy as we would like it to be. For example,

$$\frac{1}{5} + \frac{1}{3} \neq \frac{1+1}{5+3} = \frac{1}{4}.$$

But, looking at the Farey sequences, how does $1/4$ relate to $1/5$ and $1/3$? Repeat for additional consecutive terms.

- **Further example of the mediant property.** Choose 3 consecutive terms of F_n, say $p_1/q_1, p_2/q_2, p_3/q_3$. Compute

$$\frac{p_1 + p_3}{q_1 + q_3}.$$

What do you observe?

- **The mediant property.** How do we go from the $(n - 1)$-st row to the n-th row? Show that if $0 < a/b < c/d < 1$, then

$$\frac{a}{b} < \frac{a + c}{b + d} < \frac{c}{d}.$$

Thus we have the following algorithm:

Algorithm 1 How to Compute F_n.

1. Copy F_{n-1} in order.
2. Insert the mediant fraction $\frac{a + c}{b + d}$ between $\frac{a}{b}$ and $\frac{c}{d}$ if $b + d \leq n$. (If $b + d > n$, the mediant $\frac{a + c}{b + d}$ will appear in a later sequence).

Use this algorithm to find F_4 from F_3. Then find F_5.

- Choose 2 consecutive terms of F_n, say p_1/q_1 and p_2/q_2. Compute $p_2/q_2 - p_1/q_1$. Compute $p_2q_1 - p_1q_2$. What do you observe? Make and prove a conjecture.

- Suppose that p_1/q_1 and p_2/q_2 are two successive terms of F_n. Prove that $p_2q_1 - p_1q_2 = 1$. Note that it is equivalent to prove that if p_1/q_1 and p_2/q_2 are two successive terms of F_n with p_1/q_1 less than p_2/q_2, then

$$\frac{p_2}{q_2} - \frac{p_1}{q_1} = \frac{1}{q_1q_2}.$$

Use induction on n and the mediant property to prove this result.

- Prove that if p_1/q_1, p_2/q_2, and p_3/q_3 are three successive terms of F_n, then

$$\frac{p_2}{q_2} = \frac{p_1 + p_3}{q_1 + q_3}.$$
2 Ford Circles

Definition 2 Ford Circle. For every rational number \(p/q \) in lowest terms, the Ford circle \(C(p, q) \) is the circle with center \(\left(\frac{p}{q}, \frac{1}{2q^2} \right) \) and radius \(\frac{1}{2q^2} \). This means that \(C(p, q) \) is the circle tangent to the \(x \)-axis at \(x = p/q \) with radius \(\frac{1}{2q^2} \). Observe that every small interval of the \(x \)-axis contains points of tangency of infinitely many Ford circles.

Example 2 Sketch \(C(0,1) \), \(C(1,1) \), \(C(1,2) \), \(C(1,3) \), \(C(2,3) \).

Example 3 Consider three adjacent terms of \(F_n \). What do you observe about the corresponding Ford circles?

Theorem 1 No Ford circles intersect. The representative circles of two distinct fractions are either tangent at one point or wholly external to one another.

Theorem 2 Ford circles and the Farey sequence. Suppose that \(h_1/k_1, h_2/k_2, \) and \(h_3/k_3 \) are three consecutive terms in some Farey sequence \(F_n \). Then the circles \(C(h_1, k_1) \) and \(C(h_2, k_2) \) are tangent at

\[
\alpha_1 = \left(\frac{h_2}{k_2} - \frac{k_1}{k_2(k_2^2 + k_1^2)}, \frac{1}{k_2^2 + k_1^2} \right),
\]

and the circles \(C(h_2, k_2) \) and \(C(h_3, k_3) \) are tangent at

\[
\alpha_2 = \left(\frac{h_2}{k_2} + \frac{k_3}{k_2(k_2^2 + k_3^2)}, \frac{1}{k_2^2 + k_3^2} \right).
\]

Moreover, \(\alpha_1 \) lies on the semicircle with diameter \(h_2/k_2 - h_1/k_1 \), and \(\alpha_2 \) lies on the semicircle with diameter \(h_3/k_3 - h_2/k_2 \).

Theorem 3 Largest Ford circle between tangent Ford circles. Suppose that \(C(a, b) \) and \(C(c, d) \) are tangent Ford circles. Then the largest Ford circle between them is \(C(a + c, b + d) \), the Ford circle associated with the mediant fraction.