1. Consider two equilateral triangles ABC and ADE as in the picture (with E, A and B lying on one line in this order). Let M be the midpoint of B and D and N be the midpoint of C and E (see picture). Show that the triangle AMN is also equilateral.

2. Let ABC be an acute angled triangle. At each of the sides draw equilateral triangles which lie outside of the triangle ABC, i.e. choose points D, E and F such that AFB, BDC and CEA are equilateral triangles that intersect the triangle ABC only in one edge each (see picture).

 a) Let X, Y and Z be the midpoints of the equilateral triangles BDC and CEA and AFB, respectively. Prove that the triangle XYZ is equilateral.

 b) Prove that the three segments AD, BE and CF intersect in a common point.

3. Let ω and Γ be two circles that are tangent to each other in point P and such that ω lies inside Γ. Let A and B two points on Γ such that the segment AB is tangent to the circle ω in point Q. Assume that the line PQ intersects the circle Γ besides P in a second point C.

 a) Prove that C has equal distance from A and B.

 b) Prove that $|CP| \cdot |CQ| = |CA|^2 = |CB|^2$ (here $|XY|$ denotes the distance of two points X and Y).
4. Let ω_1 and ω_2 be two circles of different sizes that intersect each other in two points. Let g and h be the common tangents of ω_1 and ω_2 and let P be the point where g and h intersect each other. Let l be a line through P and assume it intersects ω_1 in the points A and C and ω_2 in the points B and D and also assume that the points A, B, C, and D lie in this order on the line l. Finally assume that g is tangent to ω_1 in E and to ω_2 in F.

a) Prove that $|PA| \cdot |PD| = |PB| \cdot |PC|$

b) Prove that $|PE| \cdot |PF| = |PA| \cdot |PD| = |PB| \cdot |PC|$.

5. Consider two equilateral triangles with equal side length and parallel sides, but one of them is pointing upwards and one pointing downwards (see picture). Suppose the two triangles intersect in a hexagonal region.

Let us now connect each vertex of this hexagon with the opposite vertex. Show that the resulting three segments intersect in a common point.

6. Let $ABCDEF$ be a hexagon. Assume that AB is parallel to DE, BC is parallel to EF, CD is parallel to FA and these three pairs of parallel lines all have the same distance (i.e. the distance between AB and DE equals the distance between BC and EF as well as the distance between CD and FA). Furthermore assume that the angle BAF is a right angle. Let S be the intersection point of the segments BE and CF. What is the size of the angle BSC and why?

7. Consider a cyclic quadrilateral $ABCD$ (i.e. a quadrilateral where all four vertices lie on a common circle) and denote by K, L, M, N the midpoints of the sides AB, BC, CD and DA, respectively. Show that the orthocenters of the triangles AKN, BLK, CML and DNM form the vertices of a parallelogram.